Implementasi Algoritma C4.5 untuk Klasifikasi Produktivitas Bebek Petelur Peternakan Tradisional
DOI:
https://doi.org/10.35447/jitekh.v13i2.1198Keywords:
Productivity, C4.5, Decision Tree, Classfication, DuckAbstract
The utilization of technology across various sectors has proven effective in addressing numerous related challenges, including in the field of animal husbandry. One recurring issue in the duck farming business owned by Mrs. Juntak is the determination of duck productivity. Making decisions on whether a duck is categorized as productive or not is a critical process that directly impacts the profit gained from the sale of its eggs. On the other hand, high market demand compels farmers like Mrs. Juntak to consistently provide products in sufficient quantity and with high quality. Therefore, identifying ducks with high productivity is essential to support both market demand and sales performance. This study applies data classification using the C4.5 algorithm, a well-established method for constructing decision tree models. The C4.5 algorithm is an extension of the earlier ID3 method, offering greater sensitivity in determining decisions based on the features used. The aim of this research is to identify the most influential determining factors and their derivatives that affect the productivity of laying ducks. The final output of the study is a branched decision tree that contains valuable insights into the key factors influencing duck productivity. The results indicate that feed is the most significant factor affecting the productivity of laying ducks, compared to other variables considered in the study.
Downloads
References
A. Darwanto, N. Addina, and S. F. Wulandari, “Pemanfaatan Daun Mangga untuk Menurunkan Off-Odor Telur Itik dan Pengaruhnya Terhadap Kandungan Protein dan Lemak,” J. Kesehat., vol. 11, no. 2, pp. 124–129, 2023, [Online]. Available: https://doi.org/10.25047/j-kes.v11i2.270
S. Andanawari, P. Hartati, and Suharti, “Analisis Pendapatan Usaha Ternak Itik Petelur (Studi Kasus di Desa Kedungsari dan Desa Trasan Kecamatan Bandongan Kabupaten Magelang) Analysis,” J. Pengemb. Penyul. Pertan., vol. 18, no. 31, pp. 18–24, 2021.
A. E. Nugraha et al., “PENINGKATAN PRODUKTIVITAS DAN DAYA SAING PETERNAK BEBEK PETELUR MELALUI PENERAPAN TEKNOLOGI PENCACAH TANAMAN, PEMBERSIH TELUR DAN DIGITAL MARKETING,” JMM (Jurnal Masy. Mandiri), vol. 9, no. 1, pp. 1–2, 2025.
Y. S. Melinda and A. Alatas, “Analisis Pendapatan Peternak Itik Petelur Sistem Pemeliharaan Intensif Di Nagari Koto Baru, Kecamatan IV Nagari, Kabupaten Sijunjung,” J. Agribus. Community Empower., vol. 7, no. 1, pp. 25–35, 2024, doi: 10.32530/jace.v7i1.736.
P. P. P. A. N. . F. I. R.H. Zer, B. H. Hayadi, and A. R. Damanik, “Pendekatan Machine Learning Menggunakan Algoritma C4.5 Berbasis Pso Dalam Analisa Pemahaman Pemrograman Website,” J. Inform. dan Tek. Elektro Terap., vol. 10, no. 3, 2022, doi: 10.23960/jitet.v10i3.2700.
D. Juliani, “Implementasi Machine Learning untuk Klasifikasi Penyakit Kanker Paru Menggunakna Metode Naïve Bayes dengan Tambahan Fitur Chatbot,” J. Ilmu Pengetah. dan Teknol., vol. 8, no. 2, pp. 12–17, 2024, doi: 10.31543/jii.v8i2.351.
M. N. Waruwu, Yulisman Zega, Ratna Natalia Mendrofa, and Yakin Niat Telaumbanua, “Implementasi Algoritma Machine Learning Untuk Deteksi Performa Akademik Mahasiswa,” Tek. Teknol. Inf. dan Multimed., vol. 5, no. 2, 2024, doi: 10.46764/teknimedia.v5i2.214.
R. S. Nurhalizah, R. Ardianto, and P. Purwono, “Analisis Supervised dan Unsupervised Learning pada Machine Learning: Systematic Literature Review,” J. Ilmu Komput. dan Inform., vol. 4, no. 1, pp. 61–72, 2024, doi: 10.54082/jiki.168.
F. Febriansyah, Z. Asti Dwiyanti, and Diash Firdaus, “Deteksi Serangan Low Rate Ddos Pada Jaringan Tradisional Menggunakan Machine Learning Dengan Algoritma Decision Tree,” Cyber Secur. dan Forensik Digit., vol. 6, no. 1, pp. 6–11, 2023, doi: 10.14421/csecurity.2023.6.1.3951.
A. R. Putra and Program, “Penerapan Teknik Data Mining Terhadap Prediksi Masa Studi Mahasiswa,” vol. 1, pp. 33–37, 2024.
P. Anggita Kristanti and S. Jatmiko, “Klasifikasi Pemilihan Produk Perbankan Dengan Algoritma Decision Tree Id3 Dan C4.5,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 4, pp. 5999–6005, 2025, doi: 10.36040/jati.v9i4.13907.
A. Novareza, R. Herdiana, and Iin, “ANALISIS DATA MINING PADA PRODUKSI IKAN AIR TAWAR DI KECAMATAN PANJALU MENGGUNAKAN METODE C4.5 Apip,” vol. 8, no. 1, pp. 252–258, 2024.
F. Nugraha, A. E. Wijaya, R. Hermawan, D. I. Sobari, and P. K. Domba, “Pengembangan Sistem IoT untuk Pemantauan Kesehatan Domba Dengan,” vol. 17, no. 2, pp. 80–95, 2024.
P. Martins, F. Cardoso, P. Váz, J. Silva, and M. Abbasi, “Performance and Scalability of Data Cleaning and Preprocessing Tools: A Benchmark on Large Real-World Datasets,” Data, vol. 10, no. 5, pp. 1–22, 2025, doi: 10.3390/data10050068.
E. Manai, M. Mejri, and J. Fattahi, “Impact of Feature Encoding on Malware Classification Explainability,” 15th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2023 - Proc., 2023, doi: 10.1109/ECAI58194.2023.10193964.
D. Maheswari, R. Bulan Anggraini, S. Aulia, Y. Diah, and B. Oloan Lubis, “Implementasi Algoritma C4.5 Untuk Klasifikasi Dampak Pola Penggunaan Media Sosial Terhadap Kesejahteraan Emosional,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 2, pp. 3411–3417, 2025, doi: 10.36040/jati.v9i2.13011.
A. Simanjorang, A. M. . Pardede, and S. Syahputra, “Implementasi Algoritma C4.5 untuk memprediksi Penjualan Paket Internet,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komputer), vol. 06, no. 02, pp. 106–115, 2024, doi: 10.54367/kakifikom.v6i2.4093.
V. M and L. C. Reddy, “A Review on Data mining from Past to the Future,” Int. J. Comput. Appl., vol. 15, no. 7, pp. 19–22, Feb. 2011, doi: 10.5120/1961-2623.
G. S. Reddy and S. Chittineni, “Entropy based C4.5-SHO algorithm with information gain optimization in data mining,” PeerJ Comput. Sci., vol. 7, pp. 1–22, 2021, doi: 10.7717/PEERJ-CS.424.
A. Nugraha, I. Maulana, P. Purwantoro, A. Susilo Yuda Irawan, and A. Voutama, “Analisis Penerapan Algoritma C4.5 Dalam Penentuan Siswa Penerima Beasiswa Karawang Cerdas,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 5, pp. 10078–10086, 2024, doi: 10.36040/jati.v8i5.10739.
C. Maulana Sidiq, A. Faqih, and G. Dwilestari, “Algoritma Decision Tree C4.5 Digunakan Untuk Mengklasifikasikan Data Stroke,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1869–1874, 2024, doi: 10.36040/jati.v8i2.8388.
N. S. B. Nugrahani and A. Prapanca, “Implementasi Algoritma C5.0 Pada Klasifikasi Status Gizi Balita Di Kecamatan Ponorogo,” vol. 06, pp. 1089–1098, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Willy Rumapea, Ummul Khair

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





.png)


.png)














