Signifikansi Pengaruh Akses Teknologi Informasi terhadap Indeks Pembangunan Manusia di Indonesia
Abstract
Human Development Index is an indicator of the progress of a country, Information Technology is an important supporter to measure the Human Development Index. This research can provide an overview to measure the progress of a country in terms of access to Information Technology. This study processed secondary data provided by the Central Statistics Agency from 2017-2019. Using K-Means and K-Medoids clustering methods. K-Means is a popular non-hierarchical grouping method that groups objects by distance to a central point, aiming to maximize similarity within groups. K-Medoids is a powerful algorithm that handles outliers using techniques such as CLARA and PAM. In 2017 with an average of 0, Gorontalo 294611827 was a low cluster while in 2018 and 2019 Gorontalo entered a medium cluster with an average of 0.349570215 and 0.394531648. Similar to Central Sulawesi, in 2017 with an average of 0.275848883 Central Sulawesi was included in the low cluster while in 2018 and 2019 Central Sulawesi entered the medium cluster with an average of 0.291938731 and 0.334276807 From this result, it can be ascertained, by increasing knowledge in Information Technology, the HDI in an area can increase as well.
Downloads
References
[2] S. Yoga, “Perubahan Sosial Budaya Masyarakat Indonesia Dan Perkembangan Teknologi Komunikasi,” Jurnal Al-Bayan, vol. 24, no. 1, pp. 29–46, 2019, doi: 10.22373/albayan.v24i1.3175.
[3] T. Oktavia, “Analisis Pengaruh Teknologi Informasi Dan Komunikasi (Tik) Serta Pendidikan Terhadap Pertumbuhan Ekonomi,” Prosiding National Simposium & Conference Ahlimedia, vol. 1, no. 1, pp. 139–146, 2020, doi: 10.47387/nasca.v1i1.26.
[4] Hermawan and H. Hasugian, “Penerapan Data Mining Untuk Clustering Indeks Pembangunan Manusia Berdasarkan Provinsi Di Indonesia,” Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia, no. September, pp. 525–532, 2022.
[5] M. S. Yang and I. Hussain, “Unsupervised Multi-View K-Means Clustering Algorithm,” IEEE Access, vol. 11, no. January, pp. 13574–13593, 2023, doi: 10.1109/ACCESS.2023.3243133.
[6] H. L. Siregar, H. Lestari Siregar, M. Zarlis, and S. Efendi, “JURNAL MEDIA INFORMATIKA BUDIDARMA Cluster Analysis using K-Means and K-Medoids Methods for Data Clustering of Amil Zakat Institutions Donor,” vol. 7, no. April, pp. 668–677, 2023, doi: 10.30865/mib.v7i2.5315.
[7] I. H. Rifa, H. Pratiwi, and R. Respatiwulan, “Clustering of Earthquake Risk in Indonesia Using K-Medoids and K-Means Algorithms,” Media Statistika, vol. 13, no. 2, pp. 194–205, 2020, doi: 10.14710/medstat.13.2.194-205.
[8] I. Fahmiyah and R. A. Ningrum, “Human Development Clustering in Indonesia: Using K-Means Method and Based on Human Development Index Categories,” Journal of Advanced Technology and Multidiscipline, vol. 2, no. 1, pp. 27–33, 2023, doi: 10.20473/jatm.v2i1.45070.
[9] K. E. Setiawan, A. Kurniawan, A. Chowanda, and D. Suhartono, “Clustering models for hospitals in Jakarta using fuzzy c-means and k-means,” Procedia Computer Science, vol. 216, no. 2022, pp. 356–363, 2023, doi: 10.1016/j.procs.2022.12.146.
[10] M. Tiwari, M. J. Zhang, J. Mayclin, S. Thrun, C. Piech, and I. Shomorony, “BanditPAM: Almost Linear Time k-Medoids Clustering via Multi-Armed Bandits,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., Curran Associates, Inc., 2020, pp. 10211–10222.
[11] P. Mishra, C. M. Pandey, U. Singh, A. Gupta, C. Sahu, and A. Keshri, “Descriptive statistics and normality tests for statistical data,” Annals of Cardiac Anaesthesia, vol. 22, no. 1, pp. 67–72, 2019, doi: 10.4103/aca.ACA_157_18.
[12] G. D. Ahadi, N. Nur, and L. Ersela, “The Simulation Study of Normality Test Using Kolmogorov-Smirnov , Anderson-Darling, and Shapiro-Wilk,” Eigen Mathematics Journal, vol. 6, no. 1, pp. 11–19, 2023.
[13] A. Sergio, M. Zen, R. Wahyuni, and D. Nohe, “Hubungan Jumlah Penduduk Miskin Dengan Berat Badan Lahir Rendah Di Kalimantan Timur Menggunakan Kolerasi Person Dan Spearman,” Prosiding Seminar Nasional Matematika, Statistika dan Aplikasinya, pp. 267–278, 2022.
[14] H. Malikhatin, A. Rusgiyono, and D. A. I. Maruddani, “PENERAPAN k-MODES CLUSTERING DENGAN VALIDASI DUNN INDEX PADA PENGELOMPOKAN KARAKTERISTIK CALON TKI MENGGUNAKAN R-GUI,” Jurnal Gaussian, vol. 10, no. 3, pp. 359–366, 2021, doi: 10.14710/j.gauss.v10i3.32790.
[15] A. D, D. IC, and P. K, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Jurnal Matrix, vol. 9, no. 3, p. 102, 2019.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.