PERBANDINGAN METODE DIMENSI FRAKTAL DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM SISTEM IDENTIFIKASI SIDIK JARI PADA CITRA DIGITAL

  • Muhammad Zen Dosen Tetap Fakultas Sains dan Teknologi Program Studi Sistem Komputer Universitas Pembangunan Panca Budi Medan

Abstract

Identification is the process of finding the data owner. Fingerprints are a unique part of each individual. The first step of the identification process is pre-processing like cropping, sharpening, resizing and grayscale. The cropping process to take part of fingerprint on the image. The sharpening process is useful for helping the otsu method in extracting features. Resize is to change image resolution while grayscalse is to change the color image into gray image. Next is the feature extraction process using the otsu method. The otsu method is used to define the threshold when the image binary process. White pixels are a feature of fingerprints. The characteristics of fingerprints are an important part of the fingerprint. Fingerprint characteristics taken with grid process. The grid process is to divide the image into sections. The identification process uses fractal dimension and neural network method. The resemblance of the test image and the training image is measured by the correlation coefficient method. Both methods are able to identify the training image 100%. The image being tested is an image with varying damage. Percentage of ability of fractal dimension method in identifying 85% while Backpropagation method 90%. In this research, how to take on characteristics is very important for the identification process.

Downloads

Download data is not yet available.

References

[1] Abdullah, H. a. (2012). “Fingerprint Identification System Using Neural Networks”. Nahrain University, College of Engineering Journal (NUCEJ), 15(2), 234–244.
[2] Astuti, E. D., & Afifah, Q. (2015). “Rancang Bangun Software Pendiagnosis Gangguan Ginjal”, Jurnal PPKM I, 26–33, ISSN: 2354-869X.
[3] Chakraborty. P., & Ghosh, A. (2014). “A Novel Face Detection and Facial Feature Detection Algorithm using Skin Colour and Back Propagation Neural Network”. International Journal of Computer Applications, 90(2), 28–31.
[4] Chandrakar, N., Agrawal, S., & Kumar, A. (2015). “Fingerprint Recognition Based on Fractal Dimension”, International Journal for Scientific Research & Development, 3(1), ISSN : 1352–1355.
[5] Farhan, M. H., George, L. E., & Hussein, A. T. (2014). “Fingerprint Identification Using Fractal Geometry”. International Journal of Advanced Research in Computer Science and Software Engineering, 4(1), 52–61, ISSN: 2277 128X.
[6] Bawono, A., Adi, K., & Gernowo, R. (2014). “Identifikasi Fokus Mikroskop Digital Menggunakan Metode Otsu”, Berkala Fisika, 17(4), 139–144, ISSN : 1410 - 9662.
[7] Fitrilina, Kurnia, R., & Aulia, S. (2013). “Identifikasi, Pengenalan Ucapan Metoda Mfcc-Hmm Untuk Perintah Gerak Robot Mobil Penjejak”. Jurnal Nasional Teknik Elektro, 2(1), 31–40, ISSN: 2302-2949.
[8] Fuad, N., & Melita, Y. (2012). “Analisa Hasil Perbandingan Metode Low-Pass Filter Dengan Median Filter Untuk Optimalisasi Kualitas Citra Digital. Jurnal Teknika”, Jurnal Teknika, 4(2), 395–401, ISSN: 2085 - 0859.
[9] Mulyadi, M. I., Isnanto, R. R., & Hidayatno, A. (n.d.). “Ekstraksi Ciri Berbasis Dimensi Fraktal”, Transient, ISSN: 2302-9927, 752.
[10] Pradhitya, R. (2015). “Pembangunan Aplikasi Deteksi dan Tracking Warna Virtual Drawing Menggunakan Algoritma Color Filtering”. Jurnal Ilmiah Komputer Dan Informatika, ISSN: 2089-9033.
[17] Rahman, S., & Ulfayani, M. (2017). Perancangan Aplikasi Identifikasi Biometrika Telapak Tangan Menggunakan Metode Freeman Chain Code. Computer Engineering, Science and System Journal, 2(2), 64-73.
[12] Rahman, S., & Ulfayani, M. (2017). Perancangan Aplikasi Identifikasi Biometrika Telapak Tangan Menggunakan Metode Freeman Chain Code. Computer Engineering, Science and System Journal, 2(2), 64-73.
[13] Santi, R. C. N. (2008). “Identifikasi Biometrik Sidik Jari dengan Metode Fraktal”, Jurnal Teknologi Informasi DINAMIK, XIII(1), 68–72, ISSN : 0854-9524.
[14] Sasidharan, G. (2014). “Retina based Personal Identification System using Skeletonization and Similarity Transformation”. International Journal of Computer Trends and Technology, 17(3), 144–147, ISSN: 2231-5381.
[15] Septadina, I. S. (2015). “Identifikasi Individu dan Jenis Kelamin Berdasarkan Pola Sidik Bibir”, Jurnal Kedokteran Dan Kesehatan, 2(2), ISSN: 231–236.
[16] Suryadi, D., Hidayat, R., & Nugroho, H. A. (2014). “Pengembangan Sistem Identifikasi Multimodal Dengan Mengunakan Wajah Dan Telinga”, Seminar Nasional Teknologi Informasi dan Komunikasi, ISSN: 231-236.
[17] Wahyudi, R., & Soesanto, O. (2015). “Rancang Bangun Aplikasi Pengenalan Pola Sidik Jari”. Kumpulan Jurnal Ilmu Komputer, 2(1), 74–83, ISSN: 2406-7857.
[18] Wardoyo, S., Wiryadinata, R., Sagita, R., & Presensi, A. (2014). “Sistem Presensi Berbasis Agoritma Eigenface Dengan Metode Principal Component Analysis”, Setrum, 3(1), 61–68, ISSN: 2301-4652.
Published
2019-10-29
How to Cite
Zen, M. (2019, October 29). PERBANDINGAN METODE DIMENSI FRAKTAL DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DALAM SISTEM IDENTIFIKASI SIDIK JARI PADA CITRA DIGITAL. JiTEKH, 7(2), 42-50. https://doi.org/https://doi.org/10.35447/jitekh.v7i02.80