Kajian Parameter 3D Printing Terhadap Ketangguhan Material dan Kualitas Permukaan Menggunakan Metode Taguchi
Abstract
3D Printing Fused Deposition Modeling (FDM) is the printing of thermoplastic material layer by layer to form a three-dimensional product in which the adhesion between layers must be well controlled to obtain high mechanical performance and product integrity. The research aims to investigate the influence of the nozzle temperature, table temperature, and filling model on the mechanical strength and surface quality of the product. The PLA filament used in this study, the experimental data capture design using the Taguchi L9 with factor and level (2)4 two nozzle temperature parameters, two model infill parameters, two print speed parameters, and printer table temperature. The durability and quality of the product are the focus of this compilation, and data analysis using robust statistical methods of S/N Ratio design. The relationship of rigidity to mechanical force is also discussed. The temperature of the nozzle becomes a major influence on the firmness of the product for the surface hardness which is a big influence not of the temperature but of the model of the infill
Downloads
References
[2] T. C. Lee, R. Ramlan, N. Shahrubudin, T. C. Lee, and R. Ramlan, “ScienceDirect ScienceDirect ScienceDirect An Overview on 3D Printing Technology : Technological , Materials , and Technology : Applications Technological , Materials , An Overview on 3D Printing and Applications,” Procedia Manuf., vol. 35, pp. 1286–1296, 2019, doi: 10.1016/j.promfg.2019.06.089.
[3] A. N. Frone et al., “Morpho-structural, thermal and mechanical properties of PLA/PHB/Cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3d printing,” Nanomaterials, vol. 10, no. 1, 2020, doi: 10.3390/nano10010051.
[4] A. K. Mohanty, “Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid),” 2018, doi: 10.1021/acsomega.8b00129.
[5] C. Tang, J. Liu, Y. Yang, Y. Liu, S. Jiang, and W. Hao, “Effect of process parameters on mechanical properties of 3D printed PLA lattice structures,” Compos. Part C Open Access, vol. 3, no. September, 2020, doi: 10.1016/j.jcomc.2020.100076.
[6] C. Abeykoon, P. Sri-Amphorn, and A. Fernando, “Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures,” Int. J. Light. Mater. Manuf., vol. 3, no. 3, pp. 284–297, 2020, doi: 10.1016/j.ijlmm.2020.03.003.
[7] A. R. Kafshgar, S. Rostami, M. R. M. Aliha, and F. Berto, “Optimization of Properties for 3D Printed PLA Material Using Taguchi, ANOVA and Multi-Objective Methodologies,” Procedia Struct. Integr., vol. 34, pp. 71–77, 2021, doi: 10.1016/j.prostr.2021.12.011.
[8] G. Kiswanto and A. Kholil, “Effect of Infill Pattern on Impact Toughness , Microstructure , and Surface Roughness of Inconel 625 Built via Filament-Based Material Extrusion Additive Manufacturing,” 2023.
[9] L. Marșavina et al., “Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens,” Eng. Fract. Mech., vol. 274, no. August, 2022, doi: 10.1016/j.engfracmech.2022.108766.
[10] M. Hikmat, S. Rostam, and Y. M. Ahmed, “Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology,” Results Eng., vol. 11, p. 100264, 2021, doi: 10.1016/j.rineng.2021.100264.
[11] M. F. Afrose, S. H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, “Effects of part build orientations on fatigue behaviour of FDM-processed PLA material,” Prog. Addit. Manuf., vol. 1, no. 1–2, pp. 21–28, 2016, doi: 10.1007/s40964-015-0002-3.
[12] A. A. Ansari and M. Kamil, “Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process,” Mater. Today Proc., vol. 45, no. xxxx, pp. 5462–5468, 2021, doi: 10.1016/j.matpr.2021.02.137.
[13] filament-pm.com, “Technical Data Sheet for Product : PETG Filament,” Petg Filam., p. 1, 2021, [Online]. Available: http://www.filament-pm.com
[14] S. Thumsorn, W. Prasong, A. Ishigami, and T. Kurose, “Pengaruh Suhu Lingkungan dan Struktur Kristal terhadap Ketangguhan Fraktur dan Produksi Termoplastik dengan Enclosure FDM 3D Printer,” pp. 1–23, 2023.
[15] C. F. Popa, M. P. Marghitas, S. V. Galatanu, and L. Marsavina, “Influence of thickness on the IZOD impact strength of FDM printed specimens from PLA and PETG,” Procedia Struct. Integr., vol. 41, no. C, pp. 557–563, 2022, doi: 10.1016/j.prostr.2022.05.064.
[16] C. Tang, J. Liu, Y. Yang, Y. Liu, S. Jiang, and W. Hao, “Effect of process parameters on mechanical properties of 3D printed PLA lattice structures,” Compos. Part C Open Access, vol. 3, no. November, 2020, doi: 10.1016/j.jcomc.2020.100076.
[17] M. M. Garmabi, P. Shahi, J. Tjong, and M. Sain, “3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding,” Addit. Manuf., vol. 56, no. January, p. 102780, 2022, doi: 10.1016/j.addma.2022.102780.
[18] R. T. Mushtaq, A. Iqbal, Y. Wang, Q. Cheok, and S. Abbas, “Parametric Effects of Fused Filament Fabrication Approach on Surface Roughness of Acrylonitrile Butadiene Styrene and Nylon-6 Polymer,” Materials (Basel)., vol. 15, no. 15, 2022, doi: 10.3390/ma15155206.
[19] M. Özenç, T. Tezel, and V. Kovan, “Investigation into impact properties of adhesively bonded 3D printed polymers,” Int. J. Adhes. Adhes., vol. 118, no. May, 2022, doi: 10.1016/j.ijadhadh.2022.103222.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.