Menganalisa Metode Association Rules Untuk Menentukan Pola Penyakit Komplikasi Pada Pasien Menggunakan Algoritma FP-Gworth

  • Sabrika Rahmayani Prodi Teknik Informatika, Fakultas Teknik dan Komputer, Universitas Harapan Medan, Medan
  • Dodi Siregar Prodi Teknik Informatika, Fakultas Teknik dan Komputer, Universitas Harapan Medan, Medan
  • Mufida Khairani Prodi Teknik Informatika, Fakultas Teknik dan Komputer, Universitas Harapan Medan, Medan
Keywords: FP-Growth, Association Rule, Data Mining, Disease Complications

Abstract

Coronavirus infection is an acute respiratory. This disease can lead to severe complications, particularly in older individuals or those with chronic illnesses. To understand the patterns of common complications among patients, this study utilizes the FP-Growth algorithm to analyze the relationship between disease histories within a dataset. The algorithm was chosen for its efficiency in processing large-scale data and identifying frequent itemset patterns compared to other algorithms. Using RapidMiner Studio software, this study successfully identified associative rule patterns that serve as references for predicting and preventing disease complications caused virus in the future. The results demonstrate that this method provides fast and accurate outcomes, aiding in decision-making for treatment and prevention strategies.

Downloads

Download data is not yet available.

References

[1] D. Novianty, F. Kedokteran, U. Lampung, G. Meneng, and K. Bandarlampung, “Indonesian Journal of Nursing and Health Sciences,” vol. 1, pp. 63–72, 2020.
[2] D. Wintana, “Penerapan Algoritma FP-Growth Untuk Menentukan Pola Pembelian Konsumen Pada Ahass Cibadak”.
[3] R. Rismayati and I. Ismarmiaty, “IMPLEMENTASI ALGORITMA FREQUENT PATTERN-GROWTH,” vol. 4, no. 2, pp. 106–114, 2021.
[4] R. Aditiya, S. Defit, and G. W. Nurcahyo, “Jurnal Informatika Ekonomi Bisnis Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan,” vol. 2, 2020, doi: 10.37034/infeb.v2i3.44.
[5] C. V. Purba and E. Buulolo, “Implementasi Algoritma Apriori Untuk Menentukan Pola Data Penyakit Pada Anak Usia Dini (Studi Kasus: RS. Estomihi),” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 308, 2020, doi: 10.30865/jurikom.v7i2.2113.
[6] M. Afdal and M. Rosadi, “PENERAPAN ASSOCIATION RULE MINING UNTUK ANALISIS,” vol. 5, no. 1, pp. 99–108, 2019.
[7] F. A. Sianturi, “Penerapan Algoritma Apriori Untuk Penentuan Tingkat Pesanan,” Mantik Penusa, vol. 2, no. 1, pp. 50–57, 2018, [Online]. Available: http://e-jurnal.pelitanusantara.ac.id/index.php/mantik/article/view/330
[8] F. T. Waruwu, E. Buulolo, E. Ndruru, K. Kunci, A. Apriori, and R. Penyakit, “KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) IMPLEMENTASI ALGORITMA APRIORI PADA ANALISA POLA DATA PENYAKIT MANUSIA YANG DISEBABKAN OLEH ROKOK,” vol. I, pp. 176–182, 2017.
[9] R. Febrian, F. Dzulfaqor, M. N. Lestari, A. A. Romadhon, and E. Widodo, “Analisis Pola Pembelian Obat di Apotek UII Farma Menggunakan Metode Algoritma Apriori,” pp. 49–54, 2018.
[10] M. Kadafi, “Penerapan Algoritma FP-GROWTH untuk Menemukan Pola Peminjaman Buku Perpustakaan UIN Raden Fatah Palembang,” vol. 10, no. 2, pp. 52–58, 2018.
[11] H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori Dan Fp-GROWTH SEBAGAI DASAR PERTIMBANGAN PENENTUAN PAKET SEMBAKO,” Proceeding SENDIU 2020, vol. 6, pp. 36–42, 2020.
Published
2025-04-25
Section
Articles