Evaluasi Kinerja Safety Device pada Auxiliary Engine Kapal melalui Pengujian Beban Bertahap Menggunakan Load Bank
Evaluasi Kinerja Safety Device pada Auxiliary Engine Kapal melalui Pengujian Beban Bertahap Menggunakan Load Bank
DOI:
https://doi.org/10.24010/jtels.v2i02.1263Keywords:
Auxiliary engine, safety device, load bank, tekanan oli, suhu pendinginAbstract
Auxiliary engine pada kapal berfungsi sebagai sumber tenaga listrik dan mekanis pendukung operasi kapal, khususnya kapal tanker. Keandalan auxiliary engine perlu dijaga melalui sistem safety device yang memonitor parameter kritis seperti tekanan oli pelumas, suhu air pendingin, dan suhu oli. Penelitian ini bertujuan mengevaluasi kinerja safety device pada auxiliary engine menggunakan pengujian beban bertahap dengan load bank. Pengujian dilaksanakan pada dua unit auxiliary engine (AE No.1 dan AE No.2) dalam dua skenario: pengujian tanpa beban selama 60 menit (data setiap 10 menit) dan pengujian berbeban bertahap pada tingkat 0%, 25%, 50%, 75%, 100% dan 110% dari kapasitas (0, 20, 40, 60, 80, 88 kW). Parameter yang direkam meliputi tekanan oli pelumas (bar), suhu cooling fresh water (°C), dan suhu lub oil (°C). Data dianalisis secara kuantitatif dan divisualisasikan dengan grafik smoothed (moving average). Hasil menunjukkan tren penurunan tekanan oli pada peningkatan waktu operasi maupun peningkatan beban, sedangkan suhu cooling water dan suhu oli meningkat seiring waktu dan beban. Pada beban 110% tercatat tekanan oli turun mendekati 4,1 bar (AE1) dan 4,0 bar (AE2), sementara suhu pendingin mencapai 83°C (AE1) dan 82°C (AE2) serta suhu oli naik hingga 86–87°C, mendekati atau melampaui ambang alarm pengaman. Secara keseluruhan, safety device terbukti berfungsi optimal dan mampu memberikan perlindungan terhadap mesin selama pengujian beban bertahap. Evaluasi ini dapat dijadikan dasar untuk penjadwalan perawatan berkala dan validasi kesiapan mesin dalam menghadapi beban operasional sesungguhnya. Dengan implementasi yang tepat, hasil penelitian ini berpotensi meningkatkan keandalan operasional dan memperpanjang umur pakai auxiliary engine kapal
Downloads
References
M. K. Tan and A. El-Sayed, “Dynamic simulation of auxiliary engine behavior under load fluctuations,” Energy, vol. 192, no. 116586, 2020, doi: 10.1016/j.energy.2019.116586.
A. R. Bhattacharya and H. K. Singh, “Thermal load assessment on auxiliary engines during ship operation,” J. Mar. Sci. Eng, vol. 8, no. 11, p. 861, 2020, doi: 10.3390/jmse8110861.
A. K. and T. Sen R. K. Mishra, “Experimental study on cooling water behavior in marine diesel engines under varying loads,” Ocean Eng., vol. 172, pp. 294–304, 2019, doi: 10.1016/j.oceaneng.2018.12.013.
S. L. Park and T. H. Kim, “Reliability assessment of marine engine safety shutdown controls,” IEEE Trans. Ind. Electron, vol. 67, no. 9, pp. 7880–7889, 2020, doi: 10.1109/TIE.2019.2940478.
D. M. and P. M. T. J. Tilley, “An investigation into cooling system reliability in large-bore diesel engines,” Proc. IMechE Part M J. Eng. Marit. Env., vol. 234, no. 3, pp. 651–662, 2020, doi: 10.1177/1475090220916942.
Y. Takahashi and K. Tanaka, “Lubricating oil degradation monitoring in diesel generator sets,” IEEE Trans. Energy Convers, vol. 33, no. 4, pp. 1910–1918, 2018, doi: 10.1109/TEC.2018.2859850.
F. S. Mohammed and A. M. Jahangir, “Effect of coolant temperature on diesel engine efficiency and emissions,” Energy Reports, vol. 6, pp. 260–268, 2020, doi: 10.1016/j.egyr.2020.11.158.
Faisal Irsan Pasaribu; Noorly Evalina; Partaonan Harahap, “Thermoelectric utilization uses parabolic reflectors as an energy source,” vol. 2702, no. 1, 2023, doi: https://doi.org/10.1063/5.0180109.
J. Karlsson and P. Andersson, “Failure analysis of safety shutdown systems in diesel generator sets,” IEEE Trans. Reliab., vol. 64, no. 2, pp. 649–658, 2016, doi: 10.1109/TR.2016.2327534.
N. Evalina and B. Ramadhani, “The Design of Solar Power Plants on Automatic Watering of Chili Plants,” vol. 7929, pp. 24–28, 2024.
H. N. C. and K. F. A. S. M. A. Rahman, “Condition monitoring of marine diesel engines using temperature and pressure signatures,” J. Mar. Sci. Eng, vol. 6, no. 2, pp. 45–54, 2078, doi: 10.3390/jmse6020045.
P. T. Nguyen and F. Chen, “Modeling of diesel generator response under gradual load increase,” IEEE Access, vol. 7, pp. 132211–132219, 2019, doi: 10.1109/ACCESS.2019.2941035.
Y. W. and H. Z. L. Pan, “Temperature-field analysis of diesel engine cooling systems under different operational conditions,” Appl. Energy, vol. 206, pp. 94–104, 2017, doi: 10.1016/j.apenergy.2017.08.161.
B. C. Huang and L. Zhao, “Real-time monitoring of lubricating oil pressure for predicting marine engine health,” IEEE Sens. J., vol. 19, no. 21, pp. 10039–10046, 2019, doi: 10.1109/JSEN.2019.2920031.
F. I. Pasaribu, I. D. Sara, T. Tarmizi, and N. Nasaruddin, “Harmonics Step Filter Control Model In Household Electricity,” in 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), 2023, pp. 165–170. doi: 10.1109/COSITE60233.2023.10249342.
Y. C. and B. K. J. S. Lee, “Fault detection in marine diesel generators using pressure-temperature signature analysis,” IEEE Trans. Instrum. Meas, vol. 68, no. 6, pp. 1835–1845, 2019, doi: 10.1109/TIM.2018.2850621.
L. C. and X. M. H. Zhang, “Thermal behavior characterization of lubricating oil in high-load diesel engines,” Appl. Therm. Eng, vol. 138, pp. 368–376, 2018, doi: 10.1016/j.applthermaleng.2018.04.121.
X. L. and Y. C. D. B. Wu, “Temperature prediction of diesel engine lubricating oil based on thermal characteristics,” Energy Convers. Manag., vol. 152, pp. 383–392, 2017, doi: 10.1016/j.enconman.2017.09.052.
F. I. Pasaribu, I. D. Sara, and T. Tarmizi, “Designed harmonic step filter automatic control system to improve power quality and electric efficiency Designed harmonic step filter automatic control system to improve power quality and electric efficiency,” 2024, doi: 10.1088/1742-6596/2777/1/012004.
M. K. Patel and A. Desai, “Performance evaluation of diesel generator using stepped load testing,” Energy Procedia, vol. 90, pp. 602–610, 2016, doi: https://10.1016/j.egypro.2015.11.779.
G. Lee and C. Park, “Analysis of cooling water flow instability in shipboard diesel engines,” Ocean Eng., vol. 198, no. 106955, 2011, doi: 10.1016/j.oceaneng.2019.106955.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 faisal faisal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

.png)
.png)


.png)

.png)







